Abstract:Bayesian optimization is an elegant solution to the hyperparameter optimization problem in machine learning. Building a reliable and robust Bayesian optimization service requires careful testing methodology and sound statistical analysis. In this talk we will outline our development of an evaluation framework to rigorously test and measure the impact of changes to the SigOpt optimization service. We present an overview of our evaluation system and discuss how this framework empowers our research engineers to confidently and quickly make changes to our core optimization engine
Abstract:Empirical analysis serves as an important complement to theoretical analysis for studying practical Bayesian optimization. Often empirical insights expose strengths and weaknesses inaccessible to theoretical analysis. We define two metrics for comparing the performance of Bayesian optimization methods and propose a ranking mechanism for summarizing performance within various genres or strata of test functions. These test functions serve to mimic the complexity of hyperparameter optimization problems, the most prominent application of Bayesian optimization, but with a closed form which allows for rapid evaluation and more predictable behavior. This offers a flexible and efficient way to investigate functions with specific properties of interest, such as oscillatory behavior or an optimum on the domain boundary.