Abstract:In this paper we present a novel approach to risk assessment for patients hospitalized with pneumonia or COVID-19 based on their admission reports. We applied a Longformer neural network to admission reports and other textual data available shortly after admission to compute risk scores for the patients. We used patient data of multiple European hospitals to demonstrate that our approach outperforms the Transformer baselines. Our experiments show that the proposed model generalises across institutions and diagnoses. Also, our method has several other advantages described in the paper.
Abstract:This paper presents several BERT-based models for Russian language biomedical text mining (RuBioBERT, RuBioRoBERTa). The models are pre-trained on a corpus of freely available texts in the Russian biomedical domain. With this pre-training, our models demonstrate state-of-the-art results on RuMedBench - Russian medical language understanding benchmark that covers a diverse set of tasks, including text classification, question answering, natural language inference, and named entity recognition.
Abstract:In this paper we present a novel approach to abstractive summarization of patient hospitalisation histories. We applied an encoder-decoder framework with Longformer neural network as an encoder and BERT as a decoder. Our experiments show improved quality on some summarization tasks compared with pointer-generator networks. We also conducted a study with experienced physicians evaluating the results of our model in comparison with PGN baseline and human-generated abstracts, which showed the effectiveness of our model.