Abstract:Despite the significant success in the field of text recognition, complex and unsolved problems still exist in this field. In recent years, the recognition accuracy of the English language has greatly increased, while the problem of recognition of hieroglyphs has received much less attention. Hieroglyph recognition or image recognition with Korean, Japanese or Chinese characters have differences from the traditional text recognition task. This article discusses the main differences between hieroglyph languages and the Latin alphabet in the context of image recognition. A light-weight method for recognizing images of the hieroglyphs is proposed and tested on a public dataset of Korean hieroglyph images. Despite the existing solutions, the proposed method is suitable for mobile devices. Its recognition accuracy is better than the accuracy of the open-source OCR framework. The presented method of training embedded net bases on the similarities in the recognition data.
Abstract:In this paper, we consider the problem of detecting counterfeit identity documents in images captured with smartphones. As the number of documents contain special fonts, we study the applicability of convolutional neural networks (CNNs) for detection of the conformance of the fonts used with the ones, corresponding to the government standards. Here, we use multi-task learning to differentiate samples by both fonts and characters and compare the resulting classifier with its analogue trained for binary font classification. We train neural networks for authenticity estimation of the fonts used in machine-readable zones and ID numbers of the Russian national passport and test them on samples of individual characters acquired from 3238 images of the Russian national passport. Our results show that the usage of multi-task learning increases sensitivity and specificity of the classifier. Moreover, the resulting CNNs demonstrate high generalization ability as they correctly classify fonts which were not present in the training set. We conclude that the proposed method is sufficient for authentication of the fonts and can be used as a part of the forgery detection system for images acquired with a smartphone camera.