Abstract:Gaussian Mixture models (GMMs) are a powerful tool for clustering, classification and density estimation when clustering structures are embedded in the data. The presence of missing values can largely impact the GMMs estimation process, thus handling missing data turns out to be a crucial point in clustering, classification and density estimation. Several techniques have been developed to impute the missing values before model estimation. Among these, multiple imputation is a simple and useful general approach to handle missing data. In this paper we propose two different methods to fit Gaussian mixtures in the presence of missing data. Both methods use a variant of the Monte Carlo Expectation-Maximisation (MCEM) algorithm for data augmentation. Thus, multiple imputations are performed during the E-step, followed by the standard M-step for a given eigen-decomposed component-covariance matrix. We show that the proposed methods outperform the multiple imputation approach, both in terms of clusters identification and density estimation.
Abstract:We propose a projection pursuit (PP) algorithm based on Gaussian mixture models (GMMs). The negentropy obtained from a multivariate density estimated by GMMs is adopted as the PP index to be maximised. For a fixed dimension of the projection subspace, the GMM-based density estimation is projected onto that subspace, where an approximation of the negentropy for Gaussian mixtures is computed. Then, Genetic Algorithms (GAs) are used to find the optimal, orthogonal projection basis by maximising the former approximation. We show that this semi-parametric approach to PP is flexible and allows highly informative structures to be detected, by projecting multivariate datasets onto a subspace, where the data can be feasibly visualised. The performance of the proposed approach is shown on both artificial and real datasets.