Abstract:In recent years, data-driven, deep learning-based approaches for precipitation nowcasting have attracted significant attention, showing promising results. However, many existing models fail to fully exploit the extensive atmospheric information available, relying primarily on precipitation data alone. This study introduces two novel deep learning architectures, SmaAt-fUsion and SmaAt-Krige-GNet, specifically designed to enhance precipitation nowcasting by integrating multi-variable weather station data with radar datasets. By leveraging additional meteorological information, these models improve representation learning in the latent space, resulting in enhanced nowcasting performance. The SmaAt-fUsion model extends the SmaAt-UNet framework by incorporating weather station data through a convolutional layer, integrating it into the bottleneck of the network. Conversely, the SmaAt-Krige-GNet model combines precipitation maps with weather station data processed using Kriging, a geo-statistical interpolation method, to generate variable-specific maps. These maps are then utilized in a dual-encoder architecture based on SmaAt-GNet, allowing multi-level data integration. Experimental evaluations were conducted using four years (2016--2019) of weather station and precipitation radar data from the Netherlands. Results demonstrate that SmaAt-Krige-GNet outperforms the standard SmaAt-UNet, which relies solely on precipitation radar data, in low precipitation scenarios, while SmaAt-fUsion surpasses SmaAt-UNet in both low and high precipitation scenarios. This highlights the potential of incorporating discrete weather station data to enhance the performance of deep learning-based weather nowcasting models.