Abstract:Transformer-based approaches such as BERT4Rec and SASRec demonstrate strong performance in Next Item Recommendation (NIR) tasks. However, applying these architectures to Next-Basket Recommendation (NBR) tasks, which often involve highly repetitive interactions, is challenging due to the vast number of possible item combinations in a basket. Moreover, frequency-based methods such as TIFU-KNN and UP-CF still demonstrate strong performance in NBR tasks, frequently outperforming deep-learning approaches. This paper introduces SAFERec, a novel algorithm for NBR that enhances transformer-based architectures from NIR by incorporating item frequency information, consequently improving their applicability to NBR tasks. Extensive experiments on multiple datasets show that SAFERec outperforms all other baselines, specifically achieving an 8\% improvement in Recall@10.
Abstract:Bayesian Personalized Ranking (BPR), a collaborative filtering approach based on matrix factorization, frequently serves as a benchmark for recommender systems research. However, numerous studies often overlook the nuances of BPR implementation, claiming that it performs worse than newly proposed methods across various tasks. In this paper, we thoroughly examine the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations. Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations. Furthermore, through extensive experiments on real-world datasets under modern evaluation settings, we demonstrate that with proper tuning of its hyperparameters, the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets. Specifically, on the Million Song Dataset, the BPR model with hyperparameters tuning statistically significantly outperforms Mult-VAE by 10% in NDCG@100 with binary relevance function.