Abstract:Occlusion is an omnipresent challenge in 3D human pose estimation (HPE). In spite of the large amount of research dedicated to 3D HPE, only a limited number of studies address the problem of occlusion explicitly. To fill this gap, we propose to combine exploitation of spatio-temporal features with synthetic occlusion augmentation during training to deal with occlusion. To this end, we build a spatio-temporal 3D HPE model, StridedPoseGraphFormer based on graph convolution and transformers, and train it using occlusion augmentation. Unlike the existing occlusion-aware methods, that are only tested for limited occlusion, we extensively evaluate our method for varying degrees of occlusion. We show that our proposed method compares favorably with the state-of-the-art (SoA). Our experimental results also reveal that in the absence of any occlusion handling mechanism, the performance of SoA 3D HPE methods degrades significantly when they encounter occlusion.
Abstract:Posture estimation using a single depth camera has become a useful tool for analyzing movements in rehabilitation. Recent advances in posture estimation in computer vision research have been possible due to the availability of large-scale pose datasets. However, the complex postures involved in rehabilitation exercises are not represented in the existing benchmark depth datasets. To address this limitation, we propose two rehabilitation-specific pose datasets containing depth images and 2D pose information of patients, both adult and children, performing rehab exercises. We use a state-of-the-art marker-less posture estimation model which is trained on a non-rehab benchmark dataset. We evaluate it on our rehab datasets, and observe that the performance degrades significantly from non-rehab to rehab, highlighting the need for these datasets. We show that our dataset can be used to train pose models to detect rehab-specific complex postures. The datasets will be released for the benefit of the research community.