Abstract:The brain uses positive signals as a means of signaling. Forward interactions in the early visual cortex are also positive, realized by excitatory synapses. Only local interactions also include inhibition. Non-negative matrix factorization (NMF) captures the biological constraint of positive long-range interactions and can be implemented with stochastic spikes. While NMF can serve as an abstract formalization of early neural processing in the visual system, the performance of deep convolutional networks with NMF modules does not match that of CNNs of similar size. However, when the local NMF modules are each followed by a module that mixes the NMF's positive activities, the performances on the benchmark data exceed that of vanilla deep convolutional networks of similar size. This setting can be considered a biologically more plausible emulation of the processing in cortical (hyper-)columns with the potential to improve the performance of deep networks.
Abstract:Specialized compute blocks have been developed for efficient DNN execution. However, due to the vast amount of data and parameter movements, the interconnects and on-chip memories form another bottleneck, impairing power and performance. This work addresses this bottleneck by contributing a low-power technique for edge-AI inference engines that combines overhead-free coding with a statistical analysis of the data and parameters of neural networks. Our approach reduces the interconnect and memory power consumption by up to 80% for state-of-the-art benchmarks while providing additional power savings for the compute blocks by up to 39%. These power improvements are achieved with no loss of accuracy and negligible hardware cost.