Abstract:Social networks have a vast range of applications with graphs. The available benchmark datasets are citation, co-occurrence, e-commerce networks, etc, with classes ranging from 3 to 15. However, there is no benchmark classification social network dataset for graph machine learning. This paper fills the gap and presents the Binary Classification Social Network Dataset (\textit{BiSND}), designed for graph machine learning applications to predict binary classes. We present the BiSND in \textit{tabular and graph} formats to verify its robustness across classical and advanced machine learning. We employ a diverse set of classifiers, including four traditional machine learning algorithms (Decision Trees, K-Nearest Neighbour, Random Forest, XGBoost), one Deep Neural Network (multi-layer perceptrons), one Graph Neural Network (Graph Convolutional Network), and three state-of-the-art Graph Contrastive Learning methods (BGRL, GRACE, DAENS). Our findings reveal that BiSND is suitable for classification tasks, with F1-scores ranging from 67.66 to 70.15, indicating promising avenues for future enhancements.
Abstract:The split and rephrase (SR) task aims to divide a long, complex sentence into a set of shorter, simpler sentences that convey the same meaning. This challenging problem in NLP has gained increased attention recently because of its benefits as a pre-processing step in other NLP tasks. Evaluating quality of SR is challenging, as there no automatic metric fit to evaluate this task. In this work, we introduce CEScore, as novel statistical model to automatically evaluate SR task. By mimicking the way humans evaluate SR, CEScore provides 4 metrics (Sscore, Gscore, Mscore, and CEscore) to assess simplicity, grammaticality, meaning preservation, and overall quality, respectively. In experiments with 26 models, CEScore correlates strongly with human evaluations, achieving 0.98 in Spearman correlations at model-level. This underscores the potential of CEScore as a simple and effective metric for assessing the overall quality of SR models.