Abstract:Autonomous off-road navigation is required for applications in agriculture, construction, search and rescue and defence. Traditional on-road autonomous methods struggle with dynamic terrains, leading to poor vehicle control on off-road. Recent deep-learning models have used perception sensors along with kinesthetic feedback for navigation on such terrains. However, this approach has out-of-domain uncertainty. Factors like change in weather and time of day impacts the performance of the model. We propose a multi modal fusion network FuseIsPath capable of using LWIR and RGB images to provide robustness against dynamic weather and light conditions. To aid further works in this domain, we also open-source a day-night dataset with LWIR and RGB images along with pseudo-labels for traversability. In order to co-register the two images we developed a novel method for targetless extrinsic calibration of LWIR, LiDAR and RGB cameras with translation accuracy of 1.7cm and rotation accuracy of 0.827degree.