Abstract:Quantum Computing is an emerging paradigm which is gathering a lot of popularity in the current scientific and technological community. Widely conceived as the next frontier of computation, Quantum Computing is still at the dawn of its development being current solving systems suffering from significant limitations in terms of performance and capabilities. Some interesting approaches have been devised by researchers and practitioners in order to overcome these barriers, being quantum-classical hybrid algorithms one of the most often used solving schemes. The main goal of this paper is to extend the results and findings of the recently proposed hybrid Quantum Computing - Tabu Search Algorithm for partitioning problems. To do that, we focus our research on the adaptation of this method to the Asymmetric Traveling Salesman Problem. In overall, we have employed six well-known instances belonging to TSPLIB to assess the performance of Quantum Computing - Tabu Search Algorithm in comparison to QBSolv -- a state-of-the-art decomposing solver. Furthermore, as an additional contribution, this work also supposes the first solver of the Asymmetric Traveling Salesman Problem using a Quantum Computing based method. Aiming to boost whole community's research in QC, we have released the project's repository as open source code for further application and improvements.
Abstract:Quantum Computing is considered as the next frontier in computing, and it is attracting a lot of attention from the current scientific community. This kind of computation provides to researchers with a revolutionary paradigm for addressing complex optimization problems, offering a significant speed advantage and an efficient search ability. Anyway, despite hopes placed in this field are high, Quantum Computing is still in an incipient stage of development. For this reason, present architectures show certain limitations in terms of computational capabilities and performance. These limitations have motivated the carrying out of this paper. With this paper, we contribute to the field introducing a novel solving scheme coined as hybrid Quantum Computing - Tabu Search Algorithm. Main pillars of operation of the proposed method are a greater control over the access to quantum resources, and a considerable reduction of non-profitable accesses. For assessing the quality of our method, we have used the well-known TSP as benchmarking problem. Furthermore, the performance of QTA has been compared with QBSolv -- a state-of-the-art decomposing solver -- on a set of 7 different TSP instances. The obtained experimental outcomes support the preliminary conclusion that QTA is an approach which offers promising results for solving partitioning problems, while it drastically reduces the access to QC resources. Furthermore, we also contribute in this paper to the field of Transfer Optimization by developing and using a evolutionary multiform multitasking algorithm as initialization method for the introduced hybrid Quantum Computing - Tabu Search Algorithm. Concretely, the evolutionary multitasking algorithm implemented is a multiform variant of the recently published Coevolutionary Variable Neighborhood Search Algorithm for Discrete Multitasking.