Abstract:Fiducial marker positions in projection image of cone-beam computed tomography (CBCT) scans have been studied to evaluate daily residual motion during breath-hold radiation therapy. Fiducial marker migration posed challenges in accurately locating markers, prompting the development of a novel algorithm that reconstructs volumetric probability maps of marker locations from filtered gradient maps of projections. This guides the development of a Python-based algorithm to detect fiducial markers in projection images using Meta AI's Segment Anything Model 2 (SAM 2). Retrospective data from a pancreatic cancer patient with two fiducial markers were analyzed. The three-dimensional (3D) marker positions from simulation computed tomography (CT) were compared to those reconstructed from CBCT images, revealing a decrease in relative distances between markers over time. Fiducial markers were successfully detected in 2777 out of 2786 projection frames. The average standard deviation of superior-inferior (SI) marker positions was 0.56 mm per breath-hold, with differences in average SI positions between two breath-holds in the same scan reaching up to 5.2 mm, and a gap of up to 7.3 mm between the end of the first and beginning of the second breath-hold. 3D marker positions were calculated using projection positions and confirmed marker migration. This method effectively calculates marker probability volume and enables accurate fiducial marker tracking during treatment without requiring any specialized equipment, additional radiation doses, or manual initialization and labeling. It has significant potential for automatically assessing daily residual motion to adjust planning margins, functioning as an adaptive radiation therapy tool.
Abstract:The newly released Segment Anything Model (SAM) is a popular tool used in image processing due to its superior segmentation accuracy, variety of input prompts, training capabilities, and efficient model design. However, its current model is trained on a diverse dataset not tailored to medical images, particularly ultrasound images. Ultrasound images tend to have a lot of noise, making it difficult to segment out important structures. In this project, we developed ClickSAM, which fine-tunes the Segment Anything Model using click prompts for ultrasound images. ClickSAM has two stages of training: the first stage is trained on single-click prompts centered in the ground-truth contours, and the second stage focuses on improving the model performance through additional positive and negative click prompts. By comparing the first stage predictions to the ground-truth masks, true positive, false positive, and false negative segments are calculated. Positive clicks are generated using the true positive and false negative segments, and negative clicks are generated using the false positive segments. The Centroidal Voronoi Tessellation algorithm is then employed to collect positive and negative click prompts in each segment that are used to enhance the model performance during the second stage of training. With click-train methods, ClickSAM exhibits superior performance compared to other existing models for ultrasound image segmentation.