Abstract:Modeling of textures in natural images is an important task to make a microscopic model of natural images. Portilla and Simoncelli proposed a generative texture model, which is based on the mechanism of visual systems in brains, with a set of texture features and a feature matching. On the other hand, the texture features, used in Portillas' model, have redundancy between its components came from typical natural textures. In this paper, we propose a contracted texture model which provides a dimension reduction for the Portillas' feature. This model is based on a hierarchical principal components analysis using known group structure of the feature. In the experiment, we reveal effective dimensions to describe texture is fewer than the original description. Moreover, we also demonstrate how well the textures can be synthesized from the contracted texture representations.
Abstract:Transfer learning is a machine learning technique designed to improve generalization performance by using pre-trained parameters obtained from other learning tasks. For image recognition tasks, many previous studies have reported that, when transfer learning is applied to deep neural networks, performance improves, despite having limited training data. This paper proposes a two-stage feature transfer learning method focusing on the recognition of textural medical images. During the proposed method, a model is successively trained with massive amounts of natural images, some textural images, and the target images. We applied this method to the classification task of textural X-ray computed tomography images of diffuse lung diseases. In our experiment, the two-stage feature transfer achieves the best performance compared to a from-scratch learning and a conventional single-stage feature transfer. We also investigated the robustness of the target dataset, based on size. Two-stage feature transfer shows better robustness than the other two learning methods. Moreover, we analyzed the feature representations obtained from DLDs imagery inputs for each feature transfer models using a visualization method. We showed that the two-stage feature transfer obtains both edge and textural features of DLDs, which does not occur in conventional single-stage feature transfer models.