Abstract:Interpretability is a key factor in the design of automatic classifiers for medical diagnosis. Deep learning models have been proven to be a very effective classification algorithm when trained in a supervised way with enough data. The main concern is the difficulty of inferring rationale interpretations from them. Different attempts have been done in last years in order to convert deep learning classifiers from high confidence statistical black box machines into self-explanatory models. In this paper we go forward into the generation of explanations by identifying the independent causes that use a deep learning model for classifying an image into a certain class. We use a combination of Independent Component Analysis with a Score Visualization technique. In this paper we study the medical problem of classifying an eye fundus image into 5 levels of Diabetic Retinopathy. We conclude that only 3 independent components are enough for the differentiation and correct classification between the 5 disease standard classes. We propose a method for visualizing them and detecting lesions from the generated visual maps.
Abstract:Deep neural network models have been proven to be very successful in image classification tasks, also for medical diagnosis, but their main concern is its lack of interpretability. They use to work as intuition machines with high statistical confidence but unable to give interpretable explanations about the reported results. The vast amount of parameters of these models make difficult to infer a rationale interpretation from them. In this paper we present a diabetic retinopathy interpretable classifier able to classify retine images into the different levels of disease severity and of explaining its results by assigning a score for every point in the hidden and input space, evaluating its contribution to the final classification in a linear way. The generated visual maps can be interpreted by an expert in order to compare its own knowledge with the interpretation given by the model.