Abstract:Link prediction is a crucial task in many downstream applications of graph machine learning. To this end, Graph Neural Network (GNN) is a widely used technique for link prediction, mainly in transductive settings, where the goal is to predict missing links between existing nodes. However, many real-life applications require an inductive setting that accommodates for new nodes, coming into an existing graph. Thus, recently inductive link prediction has attracted considerable attention, and a multi-layer perceptron (MLP) is the popular choice of most studies to learn node representations. However, these approaches have limited expressivity and do not fully capture the graph's structural signal. Therefore, in this work we propose LEAP, an inductive link prediction method based on LEArnable toPology augmentation. Unlike previous methods, LEAP models the inductive bias from both the structure and node features, and hence is more expressive. To the best of our knowledge, this is the first attempt to provide structural contexts for new nodes via learnable augmentation in inductive settings. Extensive experiments on seven real-world homogeneous and heterogeneous graphs demonstrates that LEAP significantly surpasses SOTA methods. The improvements are up to 22\% and 17\% in terms of AUC and average precision, respectively. The code and datasets are available on GitHub (https://github.com/AhmedESamy/LEAP/)
Abstract:Self-supervised graph representation learning (SSGRL) is a representation learning paradigm used to reduce or avoid manual labeling. An essential part of SSGRL is graph data augmentation. Existing methods usually rely on heuristics commonly identified through trial and error and are effective only within some application domains. Also, it is not clear why one heuristic is better than another. Moreover, recent studies have argued against some techniques (e.g., dropout: that can change the properties of molecular graphs or destroy relevant signals for graph-based document classification tasks). In this study, we propose a novel data-driven SSGRL approach that automatically learns a suitable graph augmentation from the signal encoded in the graph (i.e., the nodes' predictive feature and topological information). We propose two complementary approaches that produce learnable feature and topological augmentations. The former learns multi-view augmentation of node features, and the latter learns a high-order view of the topology. Moreover, the augmentations are jointly learned with the representation. Our approach is general that it can be applied to homogeneous and heterogeneous graphs. We perform extensive experiments on node classification (using nine homogeneous and heterogeneous datasets) and graph property prediction (using another eight datasets). The results show that the proposed method matches or outperforms the SOTA SSGRL baselines and performs similarly to semi-supervised methods. The anonymised source code is available at https://github.com/AhmedESamy/dsgrl/