Abstract:The 3D object detection capabilities in urban environments have been enormously improved by recent developments in Light Detection and Range (LiDAR) technology. This paper presents a novel framework that transforms the detection and analysis of 3D objects in traffic scenarios by utilizing the power of elevated LiDAR sensors. We are presenting our methodology's remarkable capacity to collect complex 3D point cloud data, which allows us to accurately and in detail capture the dynamics of urban traffic. Due to the limitation in obtaining real-world traffic datasets, we utilize the simulator to generate 3D point cloud for specific scenarios. To support our experimental analysis, we firstly simulate various 3D point cloud traffic-related objects. Then, we use this dataset as a basis for training and evaluating our 3D object detection models, in identifying and monitoring both vehicles and pedestrians in simulated urban traffic environments. Next, we fine tune the Point Voxel-Region-based Convolutional Neural Network (PV-RCNN) architecture, making it more suited to handle and understand the massive volumes of point cloud data generated by our urban traffic simulations. Our results show the effectiveness of the proposed solution in accurately detecting objects in traffic scenes and highlight the role of LiDAR in improving urban safety and advancing intelligent transportation systems.
Abstract:The integration of Light Detection and Ranging (LiDAR) and Internet of Things (IoT) technologies offers transformative opportunities for public health informatics in urban safety and pedestrian well-being. This paper proposes a novel framework utilizing these technologies for enhanced 3D object detection and activity classification in urban traffic scenarios. By employing elevated LiDAR, we obtain detailed 3D point cloud data, enabling precise pedestrian activity monitoring. To overcome urban data scarcity, we create a specialized dataset through simulated traffic environments in Blender, facilitating targeted model training. Our approach employs a modified Point Voxel-Region-based Convolutional Neural Network (PV-RCNN) for robust 3D detection and PointNet for classifying pedestrian activities, significantly benefiting urban traffic management and public health by offering insights into pedestrian behavior and promoting safer urban environments. Our dual-model approach not only enhances urban traffic management but also contributes significantly to public health by providing insights into pedestrian behavior and promoting safer urban environment.
Abstract:Breathing monitoring is crucial in healthcare for early detection of health issues, but traditional methods face challenges like invasiveness, privacy concerns, and limited applicability in daily settings. This paper introduces light detection and ranging (LiDAR) sensors as a remote, privacy-respecting alternative for monitoring breathing metrics, including inhalation/exhalation patterns, respiratory rates, breath depth, and detecting breathlessness. We highlight LiDARs ability to function across various postures, presenting empirical evidence of its accuracy and reliability. Our findings position LiDAR as an innovative solution in breathing monitoring, offering significant advantages over conventional methods.