Abstract:This paper introduces the Contextual Language model for Accurate Imputation Method (CLAIM), a novel strategy that capitalizes on the expansive knowledge and reasoning capabilities of pre-trained large language models (LLMs) to address missing data challenges in tabular datasets. Unlike traditional imputation methods, which predominantly rely on numerical estimations, CLAIM utilizes contextually relevant natural language descriptors to fill missing values. This approach transforms datasets into natural language contextualized formats that are inherently more aligned with LLMs' capabilities, thereby facilitating the dual use of LLMs: first, to generate missing value descriptors, and then, to fine-tune the LLM on the enriched dataset for improved performance in downstream tasks. Our evaluations across diverse datasets and missingness patterns reveal CLAIM's superior performance over existing imputation techniques. Furthermore, our investigation into the effectiveness of context-specific versus generic descriptors for missing data highlights the importance of contextual accuracy in enhancing LLM performance for data imputation. The results underscore CLAIM's potential to markedly improve the reliability and quality of data analysis and machine learning models, offering a more nuanced and effective solution for handling missing data.