Abstract:Human-Robot Interaction (HRI) becomes more and more important in a world where robots integrate fast in all aspects of our lives but HRI applications depend massively on the utilized robotic system as well as the deployment environment and cultural differences. Because of these variable dependencies it is often not feasible to use a data-driven approach to train a model for human intent recognition. Expert systems have been proven to close this gap very efficiently. Furthermore, it is important to support understandability in HRI systems to establish trust in the system. To address the above-mentioned challenges in HRI we present an adaptable python library in which current state-of-the-art Models for context recognition can be integrated. For Context-Based Intention Recognition a two-layer Bayesian Network (BN) is used. The bayesian approach offers explainability and clarity in the creation of scenarios and is easily extendable with more modalities. Additionally, it can be used as an expert system if no data is available but can as well be fine-tuned when data becomes available.
Abstract:Robots are becoming everyday devices, increasing their interaction with humans. To make human-machine interaction more natural, cognitive features like Visual Voice Activity Detection (VVAD), which can detect whether a person is speaking or not, given visual input of a camera, need to be implemented. Neural networks are state of the art for tasks in Image Processing, Time Series Prediction, Natural Language Processing and other domains. Those Networks require large quantities of labeled data. Currently there are not many datasets for the task of VVAD. In this work we created a large scale dataset called the VVAD-LRS3 dataset, derived by automatic annotations from the LRS3 dataset. The VVAD-LRS3 dataset contains over 44K samples, over three times the next competitive dataset (WildVVAD). We evaluate different baselines on four kinds of features: facial and lip images, and facial and lip landmark features. With a Convolutional Neural Network Long Short Term Memory (CNN LSTM) on facial images an accuracy of 92% was reached on the test set. A study with humans showed that they reach an accuracy of 87.93% on the test set.