Abstract:Predicting a fast and accurate model for stock price forecasting is been a challenging task and this is an active area of research where it is yet to be found which is the best way to forecast the stock price. Machine learning, deep learning and statistical analysis techniques are used here to get the accurate result so the investors can see the future trend and maximize the return of investment in stock trading. This paper will review many deep learning algorithms for stock price forecasting. We use a record of s&p 500 index data for training and testing. The survey motive is to check various deep learning and statistical model techniques for stock price forecasting that are Moving Averages, ARIMA which are statistical techniques and LSTM, RNN, CNN, and FULL CNN which are deep learning models. It will discuss various models, including the Auto regression integration moving average model, the Recurrent neural network model, the long short-term model which is the type of RNN used for long dependency for data, the convolutional neural network model, and the full convolutional neural network model, in terms of error calculation or percentage of accuracy that how much it is accurate which measures by the function like Root mean square error, mean absolute error, mean squared error. The model can be used to predict the stock price by checking the low MAE value as lower the MAE value the difference between the predicting and the actual value will be less and this model will predict the price more accurately than other models.
Abstract:This paper presents a comparative analysis of the performances of three portfolio optimization approaches. Three approaches of portfolio optimization that are considered in this work are the mean-variance portfolio (MVP), hierarchical risk parity (HRP) portfolio, and reinforcement learning-based portfolio. The portfolios are trained and tested over several stock data and their performances are compared on their annual returns, annual risks, and Sharpe ratios. In the reinforcement learning-based portfolio design approach, the deep Q learning technique has been utilized. Due to the large number of possible states, the construction of the Q-table is done using a deep neural network. The historical prices of the 50 premier stocks from the Indian stock market, known as the NIFTY50 stocks, and several stocks from 10 important sectors of the Indian stock market are used to create the environment for training the agent.