Abstract:Global leaders and policymakers are unified in their unequivocal commitment to decarbonization efforts in support of Net-Zero agreements. District Heating Systems (DHS), while contributing to carbon emissions due to the continued reliance on fossil fuels for heat production, are embracing more sustainable practices albeit with some sense of vulnerability as it could constrain their ability to adapt to dynamic demand and production scenarios. As demographic demands grow and renewables become the central strategy in decarbonizing the heating sector, the need for accurate demand forecasting has intensified. Advances in digitization have paved the way for Machine Learning (ML) based solutions to become the industry standard for modeling complex time series patterns. In this paper, we focus on building a Deep Learning (DL) model that uses deconstructed components of independent and dependent variables that affect heat demand as features to perform multi-step ahead forecasting of head demand. The model represents the input features in a time-frequency space and uses an attention mechanism to generate accurate forecasts. The proposed method is evaluated on a real-world dataset and the forecasting performance is assessed against LSTM and CNN-based forecasting models. Across different supply zones, the attention-based models outperforms the baselines quantitatively and qualitatively, with an Mean Absolute Error (MAE) of 0.105 with a standard deviation of 0.06kW h and a Mean Absolute Percentage Error (MAPE) of 5.4% with a standard deviation of 2.8%, in comparison the second best model with a MAE of 0.10 with a standard deviation of 0.06kW h and a MAPE of 5.6% with a standard deviation of 3%.
Abstract:One of the primal challenges faced by utility companies is ensuring efficient supply with minimal greenhouse gas emissions. The advent of smart meters and smart grids provide an unprecedented advantage in realizing an optimised supply of thermal energies through proactive techniques such as load forecasting. In this paper, we propose a forecasting framework for heat demand based on neural networks where the time series are encoded as scalograms equipped with the capacity of embedding exogenous variables such as weather, and holiday/non-holiday. Subsequently, CNNs are utilized to predict the heat load multi-step ahead. Finally, the proposed framework is compared with other state-of-the-art methods, such as SARIMAX and LSTM. The quantitative results from retrospective experiments show that the proposed framework consistently outperforms the state-of-the-art baseline method with real-world data acquired from Denmark. A minimal mean error of 7.54% for MAPE and 417kW for RMSE is achieved with the proposed framework in comparison to all other methods.