Abstract:We introduce a data-centric approach for mitigating presentation bias in real-time neural query autocomplete systems through the use of synthetic prefixes. These prefixes are generated from complete user queries collected during regular search sessions where autocomplete was not active. This allows us to enrich the training data for learning to rank models with more diverse and less biased examples. This method addresses the inherent bias in engagement signals collected from live query autocomplete interactions, where model suggestions influence user behavior. Our neural ranker is optimized for real-time deployment under strict latency constraints and incorporates a rich set of features, including query popularity, seasonality, fuzzy match scores, and contextual signals such as department affinity, device type, and vertical alignment with previous user queries. To support efficient training, we introduce a task-specific simplification of the listwise loss, reducing computational complexity from $O(n^2)$ to $O(n)$ by leveraging the query autocomplete structure of having only one ground-truth selection per prefix. Deployed in a large-scale e-commerce setting, our system demonstrates statistically significant improvements in user engagement, as measured by mean reciprocal rank and related metrics. Our findings show that synthetic prefixes not only improve generalization but also provide a scalable path toward bias mitigation in other low-latency ranking tasks, including related searches and query recommendations.
Abstract:Query autocomplete (QAC) also known as typeahead, suggests list of complete queries as user types prefix in the search box. It is one of the key features of modern search engines specially in e-commerce. One of the goals of typeahead is to suggest relevant queries to users which are seasonally important. In this paper we propose a neural network based natural language processing (NLP) algorithm to incorporate seasonality as a signal and present end to end evaluation of the QAC ranking model. Incorporating seasonality into autocomplete ranking model can improve autocomplete relevance and business metric.