Abstract:We present CluStRE, a novel streaming graph clustering algorithm that balances computational efficiency with high-quality clustering using multi-stage refinement. Unlike traditional in-memory clustering approaches, CluStRE processes graphs in a streaming setting, significantly reducing memory overhead while leveraging re-streaming and evolutionary heuristics to improve solution quality. Our method dynamically constructs a quotient graph, enabling modularity-based optimization while efficiently handling large-scale graphs. We introduce multiple configurations of CluStRE to provide trade-offs between speed, memory consumption, and clustering quality. Experimental evaluations demonstrate that CluStRE improves solution quality by 89.8%, operates 2.6 times faster, and uses less than two-thirds of the memory required by the state-of-the-art streaming clustering algorithm on average. Moreover, our strongest mode enhances solution quality by up to 150% on average. With this, CluStRE achieves comparable solution quality to in-memory algorithms, i.e. over 96% of the quality of clustering approaches, including Louvain, effectively bridging the gap between streaming and traditional clustering methods.
Abstract:A widely-used operation on graphs is local clustering, i.e., extracting a well-characterized community around a seed node without the need to process the whole graph. Recently local motif clustering has been proposed: it looks for a local cluster based on the distribution of motifs. Since this local clustering perspective is relatively new, most approaches proposed for it are extensions of statistical and numerical methods previously used for edge-based local clustering, while the available combinatorial approaches are still few and relatively simple. In this work, we build a hypergraph and a graph model which both represent the motif-distribution around the seed node. We solve these models using sophisticated combinatorial algorithms designed for (hyper)graph partitioning. In extensive experiments with the triangle motif, we observe that our algorithm computes communities with a motif conductance value being one third on average in comparison against the communities computed by the state-of-the-art tool MAPPR while being 6.3 times faster on average.