Abstract:In today's digital age, Convolutional Neural Networks (CNNs), a subset of Deep Learning (DL), are widely used for various computer vision tasks such as image classification, object detection, and image segmentation. There are numerous types of CNNs designed to meet specific needs and requirements, including 1D, 2D, and 3D CNNs, as well as dilated, grouped, attention, depthwise convolutions, and NAS, among others. Each type of CNN has its unique structure and characteristics, making it suitable for specific tasks. It's crucial to gain a thorough understanding and perform a comparative analysis of these different CNN types to understand their strengths and weaknesses. Furthermore, studying the performance, limitations, and practical applications of each type of CNN can aid in the development of new and improved architectures in the future. We also dive into the platforms and frameworks that researchers utilize for their research or development from various perspectives. Additionally, we explore the main research fields of CNN like 6D vision, generative models, and meta-learning. This survey paper provides a comprehensive examination and comparison of various CNN architectures, highlighting their architectural differences and emphasizing their respective advantages, disadvantages, applications, challenges, and future trends.
Abstract:Due to the epidemic of the coronavirus (Covid-19) and its rapid spread around the world, the world has faced an enormous crisis. To prevent the spread of the coronavirus, the World Health Organization (WHO) has introduced the use of masks and keeping social distance as the best preventive method. So, developing an automatic monitoring system for detecting facemasks in some crowded places is essential. To do this, we propose a mask recognition system based on transfer learning and Inception v3 architecture. In the proposed method, two datasets are used simultaneously for training including the Simulated Mask Face Dataset (SMFD) and MaskedFace-Net (MFN) This paper tries to increase the accuracy of the proposed system by optimally setting hyper-parameters and accurately designing the fully connected layers. The main advantage of the proposed method is that in addition to masked and unmasked faces, it can also detect cases of incorrect use of mask. Therefore, the proposed method classifies the input face images into three categories. Experimental results show the high accuracy and efficiency of the proposed method; so, this method has achieved an accuracy of 99.47% and 99.33% in training and test data respectively