Abstract:Changepoints are abrupt variations in the underlying distribution of data. Detecting changes in a data stream is an important problem with many applications. In this paper, we are interested in changepoint detection algorithms which operate in an online setting in the sense that both its storage requirements and worst-case computational complexity per observation are independent of the number of previous observations. We propose an online changepoint detection algorithm for both univariate and multivariate data which compares favorably with offline changepoint detection algorithms while also operating in a strictly more constrained computational model. In addition, we present a simple online hyperparameter auto tuning technique for these algorithms.
Abstract:Decomposing a complex time series into trend, seasonality, and remainder components is an important primitive that facilitates time series anomaly detection, change point detection and forecasting. Although numerous batch algorithms are known for time series decomposition, none operate well in an online scalable setting where high throughput and real-time response are paramount. In this paper, we propose OnlineSTL, a novel online algorithm for time series decomposition which solves the scalability problem and is deployed for real-time metrics monitoring on high resolution, high ingest rate data. Experiments on different synthetic and real world time series datasets demonstrate that OnlineSTL achieves orders of magnitude speedups while maintaining quality of decomposition.