Abstract:In this work, we augment reinforcement learning with an inference-time collision model to ensure safe and efficient container management in a waste-sorting facility with limited processing capacity. Each container has two optimal emptying volumes that trade off higher throughput against overflow risk. Conventional reinforcement learning (RL) approaches struggle under delayed rewards, sparse critical events, and high-dimensional uncertainty -- failing to consistently balance higher-volume empties with the risk of safety-limit violations. To address these challenges, we propose a hybrid method comprising: (1) a curriculum-learning pipeline that incrementally trains a PPO agent to handle delayed rewards and class imbalance, and (2) an offline pairwise collision model used at inference time to proactively avert collisions with minimal online cost. Experimental results show that our targeted inference-time collision checks significantly improve collision avoidance, reduce safety-limit violations, maintain high throughput, and scale effectively across varying container-to-PU ratios. These findings offer actionable guidelines for designing safe and efficient container-management systems in real-world facilities.
Abstract:We present a proximal policy optimization (PPO) agent trained through curriculum learning (CL) principles and meticulous reward engineering to optimize a real-world high-throughput waste sorting facility. Our work addresses the challenge of effectively balancing the competing objectives of operational safety, volume optimization, and minimizing resource usage. A vanilla agent trained from scratch on these multiple criteria fails to solve the problem due to its inherent complexities. This problem is particularly difficult due to the environment's extremely delayed rewards with long time horizons and class (or action) imbalance, with important actions being infrequent in the optimal policy. This forces the agent to anticipate long-term action consequences and prioritize rare but rewarding behaviours, creating a non-trivial reinforcement learning task. Our five-stage CL approach tackles these challenges by gradually increasing the complexity of the environmental dynamics during policy transfer while simultaneously refining the reward mechanism. This iterative and adaptable process enables the agent to learn a desired optimal policy. Results demonstrate that our approach significantly improves inference-time safety, achieving near-zero safety violations in addition to enhancing waste sorting plant efficiency.
Abstract:We present ContainerGym, a benchmark for reinforcement learning inspired by a real-world industrial resource allocation task. The proposed benchmark encodes a range of challenges commonly encountered in real-world sequential decision making problems, such as uncertainty. It can be configured to instantiate problems of varying degrees of difficulty, e.g., in terms of variable dimensionality. Our benchmark differs from other reinforcement learning benchmarks, including the ones aiming to encode real-world difficulties, in that it is directly derived from a real-world industrial problem, which underwent minimal simplification and streamlining. It is sufficiently versatile to evaluate reinforcement learning algorithms on any real-world problem that fits our resource allocation framework. We provide results of standard baseline methods. Going beyond the usual training reward curves, our results and the statistical tools used to interpret them allow to highlight interesting limitations of well-known deep reinforcement learning algorithms, namely PPO, TRPO and DQN.