Abstract:Severe collisions can result from aggressive driving and poor road conditions, emphasizing the need for effective monitoring to ensure safety. Smartphones, with their array of built-in sensors, offer a practical and affordable solution for road-sensing. However, the lack of reliable, standardized datasets has hindered progress in assessing road conditions and driving patterns. This study addresses this gap by introducing a comprehensive dataset derived from smartphone sensors, which surpasses existing datasets by incorporating a diverse range of sensors including accelerometer, gyroscope, magnetometer, GPS, gravity, orientation, and uncalibrated sensors. These sensors capture extensive parameters such as acceleration force, gravitation, rotation rate, magnetic field strength, and vehicle speed, providing a detailed understanding of road conditions and driving behaviors. The dataset is designed to enhance road safety, infrastructure maintenance, traffic management, and urban planning. By making this dataset available to the community, the study aims to foster collaboration, inspire further research, and facilitate the development of innovative solutions in intelligent transportation systems.
Abstract:This research provides an in-depth comprehensive review of the progress of chatbot technology over time, from the initial basic systems relying on rules to today's advanced conversational bots powered by artificial intelligence. Spanning many decades, the paper explores the major milestones, innovations, and paradigm shifts that have driven the evolution of chatbots. Looking back at the very basic statistical model in 1906 via the early chatbots, such as ELIZA and ALICE in the 1960s and 1970s, the study traces key innovations leading to today's advanced conversational agents, such as ChatGPT and Google Bard. The study synthesizes insights from academic literature and industry sources to highlight crucial milestones, including the introduction of Turing tests, influential projects such as CALO, and recent transformer-based models. Tracing the path forward, the paper highlights how natural language processing and machine learning have been integrated into modern chatbots for more sophisticated capabilities. This chronological survey of the chatbot landscape provides a holistic reference to understand the technological and historical factors propelling conversational AI. By synthesizing learnings from this historical analysis, the research offers important context about the developmental trajectory of chatbots and their immense future potential across various field of application which could be the potential take ways for the respective research community and stakeholders.