Abstract:The task of uncovering causal relationships among multivariate time series data stands as an essential and challenging objective that cuts across a broad array of disciplines ranging from climate science to healthcare. Such data entails linear or non-linear relationships, and usually follow multiple a priori unknown regimes. Existing causal discovery methods can infer summary causal graphs from heterogeneous data with known regimes, but they fall short in comprehensively learning both regimes and the corresponding causal graph. In this paper, we introduce CASTOR, a novel framework designed to learn causal relationships in heterogeneous time series data composed of various regimes, each governed by a distinct causal graph. Through the maximization of a score function via the EM algorithm, CASTOR infers the number of regimes and learns linear or non-linear causal relationships in each regime. We demonstrate the robust convergence properties of CASTOR, specifically highlighting its proficiency in accurately identifying unique regimes. Empirical evidence, garnered from exhaustive synthetic experiments and two real-world benchmarks, confirm CASTOR's superior performance in causal discovery compared to baseline methods. By learning a full temporal causal graph for each regime, CASTOR establishes itself as a distinctly interpretable method for causal discovery in heterogeneous time series.
Abstract:In this paper, we propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples. We achieve this by combining two novel paradigms that have recently seen much success in a wide variety of real-world applications: graph neural networks (GNN), and meta-learning. We train a Meta-GNN based classifier that learns a global model from a set of training patients such that this global model can eventually be adapted to a new unseen patient using very limited samples. We apply our approach on the TUSZ-dataset, one of the largest and publicly available benchmark datasets for epilepsy. We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.