Abstract:Retrieval Augmented Generation (RAG) is a common method for integrating external knowledge into pretrained Large Language Models (LLMs) to enhance accuracy and relevancy in question answering (QA) tasks. However, prompt engineering and resource efficiency remain significant bottlenecks in developing optimal and robust RAG solutions for real-world QA applications. Recent studies have shown success in using fine tuning to address these problems; in particular, Retrieval Augmented Fine Tuning (RAFT) applied to smaller 7B models has demonstrated superior performance compared to RAG setups with much larger models such as GPT-3.5. The combination of RAFT with parameter-efficient fine tuning (PEFT) techniques, such as Low-Rank Adaptation (LoRA), promises an even more efficient solution, yet remains an unexplored area. In this work, we combine RAFT with LoRA to reduce fine tuning and storage requirements and gain faster inference times while maintaining comparable RAG performance. This results in a more compute-efficient RAFT, or CRAFT, which is particularly useful for knowledge-intensive QA tasks in resource-constrained environments where internet access may be restricted and hardware resources limited.
Abstract:Deep learning has had remarkable success at analyzing handheld imagery such as consumer photos due to the availability of large-scale human annotations (e.g., ImageNet). However, remote sensing data lacks such extensive annotation and thus potential for supervised learning. To address this, we propose a highly effective semi-supervised approach tailored specifically to remote sensing data. Our approach encompasses two key contributions. First, we adapt the FixMatch framework to remote sensing data by designing robust strong and weak augmentations suitable for this domain. Second, we develop an effective semi-supervised learning method by removing bias in imbalanced training data resulting from both actual labels and pseudo-labels predicted by the model. Our simple semi-supervised framework was validated by extensive experimentation. Using 30\% of labeled annotations, it delivers a 7.1\% accuracy gain over the supervised learning baseline and a 2.1\% gain over the supervised state-of-the-art CDS method on the remote sensing xView dataset.
Abstract:The need for labeled data is among the most common and well-known practical obstacles to deploying deep learning algorithms to solve real-world problems. The current generation of learning algorithms requires a large volume of data labeled according to a static and pre-defined schema. Conversely, humans can quickly learn generalizations based on large quantities of unlabeled data, and turn these generalizations into classifications using spontaneous labels, often including labels not seen before. We apply a state-of-the-art unsupervised learning algorithm to the noisy and extremely imbalanced xView data set to train a feature extractor that adapts to several tasks: visual similarity search that performs well on both common and rare classes; identifying outliers within a labeled data set; and learning a natural class hierarchy automatically.