Abstract:Electricity prices in liberalized markets are determined by the supply and demand for electric power, which are in turn driven by various external influences that vary strongly in time. In perfect competition, the merit order principle describes that dispatchable power plants enter the market in the order of their marginal costs to meet the residual load, i.e. the difference of load and renewable generation. Many market models implement this principle to predict electricity prices but typically require certain assumptions and simplifications. In this article, we present an explainable machine learning model for the prices on the German day-ahead market, which substantially outperforms a benchmark model based on the merit order principle. Our model is designed for the ex-post analysis of prices and thus builds on various external features. Using Shapley Additive exPlanation (SHAP) values, we can disentangle the role of the different features and quantify their importance from empiric data. Load, wind and solar generation are most important, as expected, but wind power appears to affect prices stronger than solar power does. Fuel prices also rank highly and show nontrivial dependencies, including strong interactions with other features revealed by a SHAP interaction analysis. Large generation ramps are correlated with high prices, again with strong feature interactions, due to the limited flexibility of nuclear and lignite plants. Our results further contribute to model development by providing quantitative insights directly from data.
Abstract:Assessing the effects of the energy transition and liberalization of energy markets on resource adequacy is an increasingly important and demanding task. The rising complexity in energy systems requires adequate methods for energy system modeling leading to increased computational requirements. Furthermore, with complexity, uncertainty increases likewise calling for probabilistic assessments and scenario analyses. To adequately and efficiently address these various requirements, new methods from the field of data science are needed to accelerate current methods. With our systematic literature review, we want to close the gap between the three disciplines (1) assessment of security of electricity supply, (2) artificial intelligence, and (3) design of experiments. For this, we conduct a large-scale quantitative review on selected fields of application and methods and make a synthesis that relates the different disciplines to each other. Among other findings, we identify metamodeling of complex security of electricity supply models using AI methods and applications of AI-based methods for forecasts of storage dispatch and (non-)availabilities as promising fields of application that have not sufficiently been covered, yet. We end with deriving a new methodological pipeline for adequately and efficiently addressing the present and upcoming challenges in the assessment of security of electricity supply.