Abstract:In this paper, we work towards extending Audio-Visual Question Answering (AVQA) to multilingual settings. Existing AVQA research has predominantly revolved around English and replicating it for addressing AVQA in other languages requires a substantial allocation of resources. As a scalable solution, we leverage machine translation and present two multilingual AVQA datasets for eight languages created from existing benchmark AVQA datasets. This prevents extra human annotation efforts of collecting questions and answers manually. To this end, we propose, MERA framework, by leveraging state-of-the-art (SOTA) video, audio, and textual foundation models for AVQA in multiple languages. We introduce a suite of models namely MERA-L, MERA-C, MERA-T with varied model architectures to benchmark the proposed datasets. We believe our work will open new research directions and act as a reference benchmark for future works in multilingual AVQA.
Abstract:Audio classification models, particularly the Audio Spectrogram Transformer (AST), play a crucial role in efficient audio analysis. However, optimizing their efficiency without compromising accuracy remains a challenge. In this paper, we introduce FastAST, a framework that integrates Token Merging (ToMe) into the AST framework. FastAST enhances inference speed without requiring extensive retraining by merging similar tokens in audio spectrograms. Furthermore, during training, FastAST brings about significant speed improvements. The experiments indicate that FastAST can increase audio classification throughput with minimal impact on accuracy. To mitigate the accuracy impact, we integrate Cross-Model Knowledge Distillation (CMKD) into the FastAST framework. Integrating ToMe and CMKD into AST results in improved accuracy compared to AST while maintaining faster inference speeds. FastAST represents a step towards real-time, resource-efficient audio analysis.