Abstract:Pain management and severity detection are crucial for effective treatment, yet traditional self-reporting methods are subjective and may be unsuitable for non-verbal individuals (people with limited speaking skills). To address this limitation, we explore automated pain detection using facial expressions. Our study leverages deep learning techniques to improve pain assessment by analyzing facial images from the Pain Emotion Faces Database (PEMF). We propose two novel approaches1: (1) a hybrid ConvNeXt model combined with Long Short-Term Memory (LSTM) blocks to analyze video frames and predict pain presence, and (2) a Spatio-Temporal Graph Convolution Network (STGCN) integrated with LSTM to process landmarks from facial images for pain detection. Our work represents the first use of the PEMF dataset for binary pain classification and demonstrates the effectiveness of these models through extensive experimentation. The results highlight the potential of combining spatial and temporal features for enhanced pain detection, offering a promising advancement in objective pain assessment methodologies.