Zero-shot learning, which studies the problem of object classification for categories for which we have no training examples, is gaining increasing attention from community. Most existing ZSL methods exploit deterministic transfer learning via an in-between semantic embedding space. In this paper, we try to attack this problem from a generative probabilistic modelling perspective. We assume for any category, the observed representation, e.g. images or texts, is developed from a unique prototype in a latent space, in which the semantic relationship among prototypes is encoded via linear reconstruction. Taking advantage of this assumption, virtual instances of unseen classes can be generated from the corresponding prototype, giving rise to a novel ZSL model which can alleviate the domain shift problem existing in the way of direct transfer learning. Extensive experiments on three benchmark datasets show our proposed model can achieve state-of-the-art results.