There are more than 80,000 character categories in Chinese while most of them are rarely used. To build a high performance handwritten Chinese character recognition (HCCR) system supporting the full character set with a traditional approach, many training samples need be collected for each character category, which is both time-consuming and expensive. In this paper, we propose a novel approach to transforming Chinese character glyph images generated from font libraries to handwritten ones with a denoising diffusion probabilistic model (DDPM). Training from handwritten samples of a small character set, the DDPM is capable of mapping printed strokes to handwritten ones, which makes it possible to generate photo-realistic and diverse style handwritten samples of unseen character categories. Combining DDPM-synthesized samples of unseen categories with real samples of other categories, we can build an HCCR system to support the full character set. Experimental results on CASIA-HWDB dataset with 3,755 character categories show that the HCCR systems trained with synthetic samples perform similarly with the one trained with real samples in terms of recognition accuracy. The proposed method has the potential to address HCCR with a larger vocabulary.