Digitalizing real-world analog signals typically involves sampling in time and discretizing in amplitude. Subsequent signal reconstructions inevitably incur an error that depends on the amplitude resolution and the temporal density of the acquired samples. From an implementation viewpoint, consistent signal reconstruction methods have proven a profitable error-rate decay as the sampling rate increases. Despite that, these results are obtained under offline settings. Therefore, a research gap exists regarding methods for consistent signal reconstruction from data streams. This paper presents a method that consistently reconstructs streamed multivariate time series of quantization intervals under a zero-delay response requirement. On the other hand, previous work has shown that the temporal dependencies within univariate time series can be exploited to reduce the roughness of zero-delay signal reconstructions. This work shows that the spatiotemporal dependencies within multivariate time series can also be exploited to achieve improved results. Specifically, the spatiotemporal dependencies of the multivariate time series are learned, with the assistance of a recurrent neural network, to reduce the roughness of the signal reconstruction on average while ensuring consistency. Our experiments show that our proposed method achieves a favorable error-rate decay with the sampling rate compared to a similar but non-consistent reconstruction.