In-game win probability is a statistical metric that provides a sports team's likelihood of winning at any given point in a game, based on the performance of historical teams in the same situation. In-game win-probability models have been extensively studied in baseball, basketball and American football. These models serve as a tool to enhance the fan experience, evaluate in game-decision making and measure the risk-reward balance for coaching decisions. In contrast, they have received less attention in association football, because its low-scoring nature makes it far more challenging to analyze. In this paper, we build an in-game win probability model for football. Specifically, we first show that porting existing approaches, both in terms of the predictive models employed and the features considered, does not yield good in-game win-probability estimates for football. Second, we introduce our own Bayesian statistical model that utilizes a set of eight variables to predict the running win, tie and loss probabilities for the home team. We train our model using event data from the last four seasons of the major European football competitions. Our results indicate that our model provides well-calibrated probabilities. Finally, we elaborate on two use cases for our win probability metric: enhancing the fan experience and evaluating performance in crucial situations.