Fairness-aware recommender systems that have a provider-side fairness concern seek to ensure that protected group(s) of providers have a fair opportunity to promote their items or products. There is a ``cost of fairness'' borne by the consumer side of the interaction when such a solution is implemented. This consumer-side cost raises its own questions of fairness, particularly when personalization is used to control the impact of the fairness constraint. In adopting a personalized approach to the fairness objective, researchers may be opening their systems up to strategic behavior on the part of users. This type of incentive has been studied in the computational social choice literature under the terminology of ``bossiness''. The concern is that a bossy user may be able to shift the cost of fairness to others, improving their own outcomes and worsening those for others. This position paper introduces the concept of bossiness, shows its application in fairness-aware recommendation and discusses strategies for reducing this strategic incentive.