Dimensionality is an important aspect for analyzing and understanding (high-dimensional) data. In their 2006 ICDM paper Tatti et al. answered the question for a (interpretable) dimension of binary data tables by introducing a normalized correlation dimension. In the present work we revisit their results and contrast them with a concept based notion of intrinsic dimension (ID) recently introduced for geometric data sets. To do this, we present a novel approximation for this ID that is based on computing concepts only up to a certain support value. We demonstrate and evaluate our approximation using all available datasets from Tatti et al., which have between 469 and 41271 extrinsic dimensions.