Recovering a person's height from a single image is important for virtual garment fitting, autonomous driving and surveillance, however, it is also very challenging due to the absence of absolute scale information. We tackle the rarely addressed case, where camera parameters and scene geometry is unknown. To nevertheless resolve the inherent scale ambiguity, we infer height from statistics that are intrinsic to human anatomy and can be estimated from images directly, such as articulated pose, bone length proportions, and facial features. Our contribution is twofold. First, we experiment with different machine learning models to capture the relation between image content and human height. Second, we show that performance is predominantly limited by dataset size and create a new dataset that is three magnitudes larger, by mining explicit height labels and propagating them to additional images through face recognition and assignment consistency. Our evaluation shows that monocular height estimation is possible with a MAE of 5.56cm.