In recent years, Transformer-based models (Transformers) have achieved significant success in multivariate time series forecasting (MTSF). However, previous works focus on extracting features either from the time domain or the frequency domain, which inadequately captures the trends and periodic characteristics. To address this issue, we propose a wavelet learning framework to model complex temporal dependencies of the time series data. The wavelet domain integrates both time and frequency information, allowing for the analysis of local characteristics of signals at different scales. Additionally, the Softmax self-attention mechanism used by Transformers has quadratic complexity, which leads to excessive computational costs when capturing long-term dependencies. Therefore, we propose a novel attention mechanism: Rotary Route Attention (RoRA). Unlike Softmax attention, RoRA utilizes rotary position embeddings to inject relative positional information to sequence tokens and introduces a small number of routing tokens $r$ to aggregate information from the $KV$ matrices and redistribute it to the $Q$ matrix, offering linear complexity. We further propose WaveRoRA, which leverages RoRA to capture inter-series dependencies in the wavelet domain. We conduct extensive experiments on eight real-world datasets. The results indicate that WaveRoRA outperforms existing state-of-the-art models while maintaining lower computational costs.