Every change of trend in the forex market presents a great opportunity as well as a risk for investors. Accurate forecasting of forex prices is a crucial element in any effective hedging or speculation strategy. However, the complex nature of the forex market makes the predicting problem challenging, which has prompted extensive research from various academic disciplines. In this paper, a novel approach that integrates the wavelet denoising, Attention-based Recurrent Neural Network (ARNN), and Autoregressive Integrated Moving Average (ARIMA) are proposed. Wavelet transform removes the noise from the time series to stabilize the data structure. ARNN model captures the robust and non-linear relationships in the sequence and ARIMA can well fit the linear correlation of the sequential information. By hybridization of the three models, the methodology is capable of modelling dynamic systems such as the forex market. Our experiments on USD/JPY five-minute data outperforms the baseline methods. Root-Mean-Squared-Error (RMSE) of the hybrid approach was found to be 1.65 with a directional accuracy of ~76%.