Uncertainty quantification has been extensively used as a means to achieve efficient directed exploration in Reinforcement Learning (RL). However, state-of-the-art methods for continuous actions still suffer from high sample complexity requirements. Indeed, they either completely lack strategies for propagating the epistemic uncertainty throughout the updates, or they mix it with aleatoric uncertainty while learning the full return distribution (e.g., distributional RL). In this paper, we propose Wasserstein Actor-Critic (WAC), an actor-critic architecture inspired by the recent Wasserstein Q-Learning (WQL) \citep{wql}, that employs approximate Q-posteriors to represent the epistemic uncertainty and Wasserstein barycenters for uncertainty propagation across the state-action space. WAC enforces exploration in a principled way by guiding the policy learning process with the optimization of an upper bound of the Q-value estimates. Furthermore, we study some peculiar issues that arise when using function approximation, coupled with the uncertainty estimation, and propose a regularized loss for the uncertainty estimation. Finally, we evaluate our algorithm on standard MujoCo tasks as well as suite of continuous-actions domains, where exploration is crucial, in comparison with state-of-the-art baselines.