Detecting out-of-distribution (OOD) data is critical to building reliable machine learning systems in the open world. Among the existing OOD detection methods, ReAct is famous for its simplicity and efficiency, and has good theoretical analysis. The gap between ID data and OOD data is enlarged by clipping the larger activation value. But the question is, is this operation optimal? Is there a better way to expand the spacing between ID samples and OOD samples in theory? Driven by these questions, we view the optimal activation function modification from the perspective of functional extremum and propose the Variational Recified Acitvations (VRA) method. In order to make our method easy to practice, we further propose several VRA variants. To verify the effectiveness of our method, we conduct experiments on many benchmark datasets. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches. Meanwhile, our method is easy to implement and does not require additional OOD data or fine-tuning process. We can realize OOD detection in only one forward pass.