https://github.com/yanweiw/noise2ptz.
A powerful paradigm for sensorimotor control is to predict actions from observations directly. Training such an end-to-end system allows representations that are useful for the downstream tasks to emerge automatically. In visual navigation, an agent can learn to navigate without any manual designs by correlating how its views change with the actions being taken. However, the lack of inductive bias makes this system data-inefficient and impractical in scenarios like search and rescue, where interacting with the environment to collect data is costly. We hypothesize a sufficient representation of the current view and the goal view for a navigation policy can be learned by predicting the location and size of a crop of the current view that corresponds to the goal. We further show that training such random crop prediction in a self-supervised fashion purely on random noise images transfers well to natural home images. The learned representation can then be bootstrapped to learn a navigation policy efficiently with little interaction data. Code is available at