Visual Mamba networks (ViMs) extend the selective space state model (Mamba) to various vision tasks and demonstrate significant potential. Vector quantization (VQ), on the other hand, decomposes network weights into codebooks and assignments, significantly reducing memory usage and computational latency to enable ViMs deployment on edge devices. Although existing VQ methods have achieved extremely low-bit quantization (e.g., 3-bit, 2-bit, and 1-bit) in convolutional neural networks and Transformer-based networks, directly applying these methods to ViMs results in unsatisfactory accuracy. We identify several key challenges: 1) The weights of Mamba-based blocks in ViMs contain numerous outliers, significantly amplifying quantization errors. 2) When applied to ViMs, the latest VQ methods suffer from excessive memory consumption, lengthy calibration procedures, and suboptimal performance in the search for optimal codewords. In this paper, we propose ViM-VQ, an efficient post-training vector quantization method tailored for ViMs. ViM-VQ consists of two innovative components: 1) a fast convex combination optimization algorithm that efficiently updates both the convex combinations and the convex hulls to search for optimal codewords, and 2) an incremental vector quantization strategy that incrementally confirms optimal codewords to mitigate truncation errors. Experimental results demonstrate that ViM-VQ achieves state-of-the-art performance in low-bit quantization across various visual tasks.