Conducting cognitive tests is time-consuming for patients and clinicians. Wearable device-based prediction models allow for continuous health monitoring under normal living conditions and could offer an alternative to identifying older adults with cognitive impairments for early interventions. In this study, we first derived novel wearable-based features related to circadian rhythms, ambient light exposure, physical activity levels, sleep, and signal processing. Then, we quantified the ability of wearable-based machine-learning models to predict poor cognition based on outcomes from the Digit Symbol Substitution Test (DSST), the Consortium to Establish a Registry for Alzheimers Disease Word-Learning subtest (CERAD-WL), and the Animal Fluency Test (AFT). We found that the wearable-based models had significantly higher AUCs when predicting all three cognitive outcomes compared to benchmark models containing age, sex, education, marital status, household income, diabetic status, depression symptoms, and functional independence scores. In addition to uncovering previously unidentified wearable-based features that are predictive of poor cognition such as the standard deviation of the midpoints of each persons most active 10-hour periods and least active 5-hour periods, our paper provides proof-of-concept that wearable-based machine learning models can be used to autonomously screen older adults for possible cognitive impairments. Such models offer cost-effective alternatives to conducting initial screenings manually in clinical settings.