Stance detection, the task of predicting an author's viewpoint towards a subject of interest, has long been a focal point of research. Current stance detection methods predominantly rely on manual annotation of sentences, followed by training a supervised machine learning model. This manual annotation process, however, imposes limitations on the model's ability to fully comprehend the stances in the sentence and hampers its potential to generalize across different contexts. In this study, we investigate the use of Large Language Models (LLMs) for the task of stance classification, with an absolute minimum use of human labels. We scrutinize four distinct types of prompting schemes combined with LLMs, comparing their accuracies with manual stance determination. Our study reveals that while LLMs can match or sometimes even exceed the benchmark results in each dataset, their overall accuracy is not definitively better than what can be produced by supervised models. This suggests potential areas for improvement in the stance classification for LLMs. The application of LLMs, however, opens up promising avenues for unsupervised stance detection, thereby curtailing the need for manual collection and annotation of stances. This not only streamlines the process but also paves the way for expanding stance detection capabilities across languages. Through this paper, we shed light on the stance classification abilities of LLMs, thereby contributing valuable insights that can guide future advancements in this domain.