Safety and security issues for Critical Infrastructures (CI) are growing as attackers increasingly adopt drones as an attack vector flying in sensitive airspace, such as airports, military bases, city centres, and crowded places. The rapid proliferation of drones for merchandise, shipping recreations activities, and other commercial applications poses severe concerns on the CI operators due to the violations and the invasions of the restricted airspaces. A cost-effective framework is needed to detect, classify and identify the presence of drones in such cases. In this paper, we demonstrate that CI operators can detect, classify and identify timely and efficiently drones (multi-copter and fixed-wings) invading no-drone zones, with an inexpensive RF-based detection framework named URANUS. Our experiments show that by using Random Forest classifier, we achieved a classification accuracy of 93.4% in the classification of one or multiple specific drones. The tracking performance achieves an accuracy with an average of MAE=0.3650, MSE=0.9254 and R2 = 0.7502. Our framework has been released as open-source, to enable the community to verify our findings and use URANUS as a ready-to-use basis for further analysis.