We investigate the approximation property of group convolutional neural networks (GCNNs) based on the ridgelet theory. We regard a group convolution as a matrix element of a group representation, and formulate a versatile GCNN as a nonlinear mapping between group representations, which covers typical GCNN literatures such as a cyclic convolution on a multi-channel image, permutation-invariant datasets (Deep Sets), and $\mathrm{E}(n)$-equivariant convolutions. The ridgelet transform is an analysis operator of a depth-2 network, namely, it maps an arbitrary given target function $f$ to the weight $\gamma$ of a network $S[\gamma]$ so that the network represents the function as $S[\gamma]=f$. It has been known only for fully-connected networks, and this study is the first to present the ridgelet transform for (G)CNNs. Since the ridgelet transform is given as a closed-form integral operator, it provides a constructive proof of the $cc$-universality of GCNNs. Unlike previous universality arguments on CNNs, we do not need to convert/modify the networks into other universal approximators such as invariant polynomials and fully-connected networks.