Large Language Models (LLMs) require frequent updates to correct errors and keep pace with continuously evolving knowledge in a timely and effective manner. Recent research in it model editing has highlighted the challenges in balancing generalization and locality, especially in the context of lifelong model editing. We discover that inserting knowledge directly into the model often causes conflicts and potentially disrupts other unrelated pre-trained knowledge. To address this problem, we introduce UniAdapt, a universal adapter for knowledge calibration. Inspired by the Mixture of Experts architecture and Retrieval-Augmented Generation, UniAdapt is designed with a vector-assisted router that is responsible for routing inputs to appropriate experts. The router maintains a vector store, including multiple shards, to construct routing vectors based on semantic similarity search results. UniAdapt is fully model-agnostic and designed for seamless plug-and-play integration. Experimental results show that UniAdapt outperforms existing lifelong model editors and achieves exceptional results in most metrics.