Deepfake has emerged for several years, yet efficient detection techniques could generalize over different manipulation methods require further research. While current image-level detection method fails to generalize to unseen domains, owing to the domain-shift phenomenon brought by CNN's strong inductive bias towards Deepfake texture, video-level one shows its potential to have both generalization across multiple domains and robustness to compression. We argue that although distinct face manipulation tools have different inherent bias, they all disrupt the consistency between frames, which is a natural characteristic shared by authentic videos. Inspired by this, we proposed a detection approach by capturing frame inconsistency that broadly exists in different forgery techniques, termed unearthing-common-inconsistency (UCI). Concretely, the UCI network based on self-supervised contrastive learning can better distinguish temporal consistency between real and fake videos from multiple domains. We introduced a temporally-preserved module method to introduce spatial noise perturbations, directing the model's attention towards temporal information. Subsequently, leveraging a multi-view cross-correlation learning module, we extensively learn the disparities in temporal representations between genuine and fake samples. Extensive experiments demonstrate the generalization ability of our method on unseen Deepfake domains.